Selasa, 15 April 2008

F/A-18 Hornet

F/A-18 Hornet

A USMC F/A-18 in flight

Type Multirole fighter
Manufacturer McDonnell Douglas/Boeing
Northrop
Maiden flight 18 November 1978
Introduction 7 January 1983
Primary users United States Navy
United States Marine Corps
Royal Australian Air Force
Spanish Air Force
Number built >1,458
Unit cost US$41 million in 2008[citation needed]
Developed from Northrop YF-17
Variants CF-18 Hornet
F/A-18E/F Super Hornet
EA-18 Growler

The McDonnell Douglas (now Boeing) F/A-18 Hornet is a modern American all-weather carrier-capable strike fighter jet, designed to attack both ground and aerial targets. Designed in the 1970s for service with the U.S. Navy and U.S. Marine Corps, the Hornet is also used by the air forces of several other nations. It has been the aerial demonstration aircraft for the U.S. Navy's Blue Angels since 1986. Its primary missions are fighter escort, fleet air defense, suppression of enemy air defenses (SEAD), interdiction, close air support and reconnaissance. Its versatility and reliability have proven it to be a valuable carrier asset, though it has been criticized for its lack of range and payload compared to its contemporaries.[1]

The F/A-18E/F Super Hornet is a distinct, evolutionary upgrade to the F/A-18 designed to serve a complementary role with Hornets in the U.S. Navy.[2]

Development

Origins

Development of the F/A-18 came as a result of the U.S. Navy's Naval Fighter-Attack, Experimental (VFAX) program to procure a multirole aircraft to replace the F-4 Phantom II, A-4 Skyhawk, and A-7 Corsair II, and to complement the F-14 Tomcat. Vice Admiral Kent Lee, then head of Naval Air Systems Command (NAVAIR), was the lead advocate for the VFAX against strong opposition from many Navy officers, including Vice Admiral William D. Houser, deputy chief of naval operations for air warfare - the highest ranking naval aviator.[3]

The YF-17 Cobra was navalized and developed into the F/A-18.

The YF-17 Cobra was navalized and developed into the F/A-18.

In August 1973, congress mandated that the Navy pursue a lower-cost alternative to the F-14. Grumman proposed a stripped F-14 designated the F-14X, while McDonnell Douglas proposed a navalized F-15, but both were nearly as expensive as the F-14.[4] That summer, Secretary of Defense Schlesinger ordered the Navy to evaluate the competitors in the Air Force's Lightweight Fighter (LWF) program, the General Dynamics YF-16 and Northrop YF-17.[5] The Air Force competition specified a day fighter with no strike capability. In May 1974, the House Armed Services Committee redirected $34 million from the VFAX to a new program, the Navy Air Combat Fighter (NACF),[5] intended to make maximum use of the technology developed for the LWF program.[4]

Redesigning the YF-17

Though the YF-16 won the LWF competition, the Navy was skeptical that an aircraft with one engine and narrow landing gear could be easily or economically adapted to carrier service, and refused to adopt an F-16 derivative. The Navy fought for and won permission to develop an aircraft based on the YF-17. Since the LWF did not share the design requirements of the VFAX, the Navy asked McDonnell Douglas and Northrop to design a new aircraft around the configuration and design principles of the YF-17. The new aircraft, designated the F-18, shared not a single essential dimension or primary structure with the YF-17. Secretary of the Navy W. Graham Claytor announced on 1 March 1977 that the name of the aircraft would be "Hornet".[4]

Northrop had enlisted the aid of McDonnell Douglas as a secondary contractor on the NACF proposal to capitalize on the latter's extensive experience in building carrier aircraft, including the highly successful F-4 Phantom II. On the F-18, the two companies agreed to split the parts manufacture evenly, with McDonnell Douglas completing the final assembly, representing ~20% of the work. McDonnell Douglas built the wings, stabilators, and forward fuselage; Northrop built the center and aft fuselage and vertical stabilizers. McDonnell Douglas was the prime contractor for the naval versions.[5] Northrop would become the prime contractor and take over final assembly for the F-18L land-based version which Northrop hoped to sell on the export market.[4]

F/A-18 attached to catapult on the flight deck of USS Abraham Lincoln.

F/A-18 attached to catapult on the flight deck of USS Abraham Lincoln.

The F-18, initially known as McDonnell Douglas Model 267, was drastically modified from the YF-17 while retaining the same basic configuration. For carrier operations, the airframe, undercarriage, and arrestor hook were strengthened, folding wings and catapult attachments were added, and the landing gear widened.[6] To meet Navy range and reserves requirements, McDonnell increased fuel capacity by 4,460 pounds (2,020 kg), with the enlargement of the dorsal spine and the addition of a 96 gallon fuel cell to each wing (the YF-17 had dry wings). Most visibly, a "snag" was added to the leading edge of the wings and stabilators to prevent a flutter discovered in the F-15 stabilator. The wings and stabilators were enlarged, the aft fuselage widened by 4 inches (102 mm), and the engines canted outward at the front. These changes added 10,000 lb (4,540 kg) to the gross weight, bringing it to 37,000 lb (16,800 kg). The computer-assisted control system of the YF-17 was replaced with a wholly digital fly-by-wire system with quadruple-redundancy, the first to be installed in a production fighter.[6]

The original plan specified acquiring 780 total of three closely related models: the single seat F-18A fighter and A-18A attack aircraft, differing only in avionics, and the dual-seat TF-18A, which retained full mission capability of the F-18,[1] except with a reduced fuel load. With redesign of the stores stations and improvements in avionics and multifunction displays, it became possible to combine the A-18A and F-18A into one aircraft.[4] Starting in 1980, the aircraft began being referred to as the F/A-18A, and the designation was officially announced on 1 April 1984. The TF-18A was redesignated F/A-18B.[4][1]

Northrop's F-18L

Northrop developed the F-18L as a potential export aircraft. Since it did not have to be strengthened for carrier service, it was expected to be lighter and better performing, and a strong competitor to the F-16 Fighting Falcon then being offered to American allies. The F-18L was 7,700 pounds (3,493 kg) (approximately 30%) lighter than the F/A-18A, due to a lighter landing gear, removal of the wing folding mechanism, and reduced part thickness in areas. Though the aircraft retained a lightened arresting hook, the most obvious external difference was the removal of the "snags" on the leading edge of the wings and stabilators. It still retained 71% commonality with the F/A-18 by parts weight, and 90% of the high-value systems, including the avionics, radar, and ECM suite, though alternatives were offered. Unlike the F/A-18, the F-18L carried no fuel in its wings and lacked weapons stations on the intakes. It had three underwing pylons on each side instead.[7]

The partnership between the McDonnell Douglas and Northrop soured over competition for foreign sales for the two models. Northrop felt that McDonnell Douglas would put the F/A-18 in direct competition with the F-18L. In October 1979, Northrop filed a series of lawsuits charging that McDonnell was using Northrop technology developed for the F-18L for foreign sales in violation of their agreement, and asked for a moratorium on foreign sales of the Hornet via McDonnell Douglas. The case was resolved in 1985 when McDonnell agreed to pay Northrop $50 million for complete rights to the design, without any admission of wrongdoing. By then Northrop had ceased work on the F-18L, and most export orders were captured by the F-16 or the F/A-18.[7]

Into production

A US Navy F/A-18 in flight

A US Navy F/A-18 in flight

During flight testing, the snag on the leading edge of the stabilators was filled in, and the gap between the leading edge root extendors (LERX) and the fuselage mostly filled in. The gap, called the boundary layer air discharge (BLAD) slots, controlled the vortices generated by the LERX and presented clean air to the vertical stabilizers at high angles of attack. However, they also generated a great deal of parasitic drag, worsening the problem of the F/A-18's inadequate range. McDonnell filled in 80% of the gap, leaving a small slot to bleed air from the engine intake. This may have contributed to early problems with fatigue cracks appearing on the vertical stabilizers due to extreme aerodynamic loads, resulting in a momentary grounding in 1984 until the stabilizers were strengthened.[citation needed] Starting in May 1988, a small vertical fence was added to the top of each LEX to broaden the vortices and direct them away from the vertical stabilizers. This also provided a minor increase in controllability as a side effect.

The first production F/A-18A flew on 12 April 1980.

Design

A Hornet doing a high-g pull-up during an air show. The high angle of attack causes powerful wingtip vortices to form at the leading edge extensions.

A Hornet doing a high-g pull-up during an air show. The high angle of attack causes powerful wingtip vortices to form at the leading edge extensions.

The F/A-18 is a twin engine, mid-wing, multi-mission tactical aircraft. It is superbly maneuverable, owing to its good thrust to weight ratio, digital fly-by-wire control system, and leading edge extensions (LEX). The LEX allow the Hornet to remain controllable at high angles of attack. This is because the LEX produce powerful vortices over the wings, creating turbulent airflow over the wings and thus delaying or eliminating the aerodynamic separation responsible for stall, allowing the Hornet's wings to generate lift several times the aircraft's weight, despite high angles of attack. The Hornet is therefore capable of extremely tight turns over a large range of speeds.

Canted vertical stabilizers are another distinguishing design element, and among the other design characteristics that enable the Hornet's excellent high angle-of-attack capability include oversized horizontal stabilators, oversized trailing edge flaps that operate as flaperons, large full-length leading-edge flaps, and flight control computer programming that multiplies the movement of each control surface at low speeds and moves the vertical rudders inboard instead of simply left and right. The Hornet's normally high angle-of-attack performance envelope was put to rigorous testing and enhanced in the NASA F-18 High-Alpha Research Vehicle (HARV).[8] NASA used the F-18 HARV to flight-validate high angle-of-attack (alpha) handling qualities that had not been done previously because of the difficulty in performing such tests in a safe and methodical manner. F/A-18 stabilators were also used as canards on NASA's F-15S/MTD.

The Hornet was among the first aircraft to heavily utilize multi-function displays, which at the switch of a button allow the pilot to perform either fighter or attack roles or both. This "force multiplier" capability gives the operational commander more flexibility in employing tactical aircraft in a rapidly changing battle scenario. It was the first Navy aircraft to incorporate a digital multiplex avionics bus, enabling easy upgrades.[1]

The Hornet is also notable for having been designed with maintenance in mind, and as a result has required far less downtime than its counterparts, the F-14 Tomcat and the A-6 Intruder. Its mean time between failure is three times greater than any other Navy strike aircraft, and requires half the maintenance time.[1] For example, whereas replacing the engine on the A-4 Skyhawk required removing the aircraft's tail, the engine on the Hornet is attached at only three points and can be directly removed without excessive disassembly. An experienced maintenance crew can remove and replace an F/A-18 engine in only a couple of hours.

F/A-18 Hornet in transonic flight (Note Prandtl-Glauert condensation).

F/A-18 Hornet in transonic flight (Note Prandtl-Glauert condensation).

The General Electric F404-GE-400 or F404-GE-402 engines powering the Hornet were also innovative in that they were designed with operability, reliability, and maintainability first. The result is an engine that, while unexceptional on paper in terms of rated performance, demonstrates exceptional robustness under a variety of conditions and is resistant to stall and flameout. By contrast, the Pratt & Whitney TF30 engines that originally powered the F-14A were notoriously prone to flameout under certain flight conditions.

The engine air inlets of the Hornet, like that of the F-16, are "fixed", while those of the F-4, F-14, and F-15 have variable geometry or variable ramp engine air inlets. The variable geometry enables high-speed aircraft to keep the velocity of the air reaching the engine below supersonic. This is one speed limiting factor in the Hornet design. Instead, the Hornet uses bleed air vents on the inboard surface of the engine air intake ducts to slow and reduce the amount of air reaching the engine. While not as effective as variable geometry, the bleed air technique functions well enough to achieve near Mach 2 speeds, which is within the designed mission requirements. The less sophisticated design is also more robust.

Because it was designed as a light multirole aircraft to complement the specialized F-14 and A-6fuel fraction. That is, its internal fuel capacity is small relative to its take-off weight, at around 23%. Most aircraft of its class has a fuel fraction between .30 to .35. This situation was exacerbated by the addition of new avionics over its lifespan, further reducing the fuel fraction. This leads to 330-gallon external tanks being a common sight on F-18s, with the centerline and inner wings stations (numbered 3, 5 and 7) being plumbed to transfer fuel. airframes, it had a relatively low internal

Design evolution

In the 1990s the US Navy faced the need to replace its aging A-6 Intruders, EA-6 Prowlers, A-7 Corsair IIs and F-14 Tomcats without proper replacements in development. To answer this deficiency, the Navy had the F/A-18E/F Super Hornet developed. Despite its designation, it is not an upgrade of the F/A-18 Hornet, but rather, a new, larger airframe utilizing the design concepts of the Hornet. Until the deployment of the F-35C Lightning II, Hornets and Super Hornets will serve complementary roles in the US Navy carrier arsenal.

Operational history

United States

Entry into service

F/A 18 Hornets on the flight deck of the Nimitz-class supercarrier Harry S. Truman

McDonnell Douglas rolled out the first F/A-18A on 13 September 1978,[9] in blue-on-white colors marked with "Navy" on the left and "Marines" on the right. Its first flight was on 18 November.[9] In a break with tradition, the Navy pioneered the "principal site concept"[5] with the F/A-18, where almost all testing was done at NAS Pax River,[1] instead of near the site of manufacture, and involving Navy test pilots instead of contractor pilots much earlier in the process.

In March 1979, Lt Cdr John Padgett became the first Navy pilot to fly the F/A-18.[10] In all, nine F/A-18As and two F/A-18Bs were assigned to flight systems development.

An F/A-18 taking off from USS Kitty Hawk.

An F/A-18 taking off from USS Kitty Hawk.

Following trials and operational testing by VX-4 and VX-5, Hornets began to fill the Fleet Replacement Squadrons (FRS) VFA-125, VFA-106, and VMFAT-101, where pilots are introduced to the F/A-18. The Hornet entered operational service with Marine Corps squadron VMFA-314 at MCAS El Toro on 7 January 1983,[9] and with Navy squadron VFA-113 in March 1983, replacing F-4s and A-7Es, respectively.[1]

The initial fleet reports were complimentary, indicating that the Hornet was extraordinarily reliable, a major change from its predecessor, the F-4J.[11] Other squadrons that switched to F/A-18 are VFA-146 "Blue diamonds", and VFA-147 "Argonauts". In January 1985, the VFA-131 Wildcats moved from Naval Air Station Lemoore to Naval Air Station Cecil Field, Florida, and became the Atlantic Fleet’s first F/A-18 squadron.

The Blue Angels' #6 F/A-18A.

The Blue Angels' #6 F/A-18A.

The US Navy's Blue Angels aerobatic team switched to the F/A-18 Hornet in 1986,[9] when it replaced the A-4 Skyhawk. The Blue Angels perform in F/A-18A and B models at air shows and other special events across the US and worldwide. Blue Angels pilots must have 1,350 hours and an aircraft carrier certification. The two-seat B model is typically used to give rides to VIPs, but can also fill in for other aircraft in the squadron in a normal show if the need arises.

After a production run of 380 F/A-18As[9] (including the nine assigned to flight systems development), manufacture shifted to the F/A-18C in September 1987.[1] As the A-6 Intruder was retired in the 1990s, its role was filled by the F/A-18. The F/A-18 demonstrated its versatility and reliability during Operation Desert Storm, shooting down enemy fighters and subsequently bombing enemy targets with the same aircraft on the same mission. It broke all records for tactical aircraft in availability, reliability, and maintainability. The aircraft's survivability was proven by Hornets taking direct hits from surface-to-air missiles, recovering successfully, being repaired quickly, and flying again the next day.[citation needed]

Combat service

The F/A-18 first saw combat action in April 1986, when VFA-131 Hornets from USS Coral SeaBenghazi as part of Operation El Dorado Canyon.[11] flew SEAD missions against Libyan air defenses during Operation Prairie Fire and an attack on

Two U.S. Navy F/A-18s were destroyed, with the loss of their pilots, during the Gulf War.[11] On 17 January 1991, the first day of the war, Lt Cmdr Scott Speicher (VFA-81) was shot down and remains missing in action. The U.S. Navy maintains that Speicher was downed by a surface to air missile.[12] However, an unclassified summary of a 2001 CIA report states that Speicher's aircraft was shot down by a missile from an Iraqi aircraft, and that he may have survived by ejecting.[13]MiG-25, firing a Bisnovat R-40/AA-6 Acrid[14] The other F/A-18 destroyed was piloted by Lt Robert Dwyer, who has been officially listed as killed in action; the cause of his loss is unclear. One source claims that the Iraqi aircraft was a missile.

U.S. F/A-18C from VFA-131 launches from French aircraft carrier Charles de Gaulle off the Virginia Capes.

U.S. F/A-18C from VFA-131 launches from French aircraft carrier Charles de Gaulle off the Virginia Capes.

F/A-18 pilots were credited with two kills during the Gulf War, both MiG-21s.[15] On the first day of the war, U.S. Navy pilots Lt Nick Mongilio and Lt Cmdr Mark Fox were sent from the USS SaratogaRed Sea to bomb an airfield in southwestern Iraq. While enroute they were warned by E-2 of approaching MiG-21 aircraft. The Hornets shot down two MiGs and resumed their bombing run, each carrying four 2,000 lb bombs, before returning to Saratoga. Mongilio and Fox become the first pilots to register air-to-air kills while still completing their original air-to-ground mission.[9][1] Overall during the Gulf War, F/A-18s flew 4,551 sorties with ten Hornets damaged including the two previously mentioned losses.[11] in the

Both U.S. Navy F/A-18A/C models and Marine F/A-18A/C/D models were used continuously in Operation Southern Watch and over Bosnia and Kosovo in the 1990s. U.S. Navy Hornets flew in Operation Enduring Freedom from carriers operating in the North Arabian Sea. Both the F/A-18A/C and newer F/A-18E/F variants were used in Operation Iraqi Freedom, operating from aircraft carriers. Later in the conflict USMC A+, C, and primarily D models operated from bases within Iraq. A F/A-18C was accidentally downed in a Friendly Fire incident by a Patriot missile early in the conflict, and two others collided over Iraq in May 2005.

Non-US service

Though Navy aircraft have not historically sold well on the export market, the F/A-18 has been purchased and is in operation with a number of foreign air services. Export Hornets are typically similar to U.S. models of a similar manufacture date. Since none of the customers operate aircraft carriers, all export models have been sold without the automatic carrier landing system, and Australia further removed the catapult attachment on the nose gear.[11] Except for Canada, all export customers purchased their Hornets through the U.S. Navy, via the U.S. Foreign Military Sales (FMS) Program, where the Navy acts as the purchasing manager but incurs no financial gain or loss. Canada ordered its planes directly from the manufacturer.

Australia

The Royal Australian Air Force purchased 57 F/A-18A fighters and 18 F/A-18B two-seat trainers, with 71 in service, and 4 lost to crashes.[16] The first F/A-18 was delivered to the RAAF on October 29, 1984.[9] The fleet is expected to be retired by 2015, replaced by the F-35 Lightning II.[17][18]

In 2001, Australia deployed four aircraft to Diego Garcia, in an air defence role, during coalition operations against the Taliban in Afghanistan. In 2003, 75 Squadron deployed 14 F/A-18s to Qatar as part of Operation Falconer.

Canada

Canadian CF-18A Hornet off the coast of Hawaii.  Note the 'false cockpit' painted on the underside of the aircraft, intended to confuse enemy pilots during dogfights.

Canadian CF-18A Hornet off the coast of Hawaii. Note the 'false cockpit' painted on the underside of the aircraft, intended to confuse enemy pilots during dogfights.

The Canadian Forces Air Command ordered 98 A models (Canadian designation CF-188/CF-18A) and 40 B models (designation CF-188/CF-18B). As of 2003, Canada has 123 in service with 15 losses.[19] The fighters are undergoing an avionics and structural upgrade program to extend service to 2020.[11]

Finland

The Finnish Air Force (Suomen Ilmavoimat) has 63 F-18C/Ds. Delivery started on June 7, 1995. One fighter was destroyed in mid-air collision in 2001.[9]

Of note in the Finnish F-18C versions is the inclusion of the ASPJ (Airborne-Self-Protection-Jammer) jamming Pod ALQ-165 that was canceled on original US Navy orders. The US Navy later included the ALQ-165 on their Super Hornet (F-18E/F) procurment.

Kuwait

The Kuwait Air Force (Al Quwwat Aj Jawwaiya Al Kuwaitiya)] has 32 F/A-18C and F/A-18D Hornets.[19] These aircraft were pre-ordered before the Iraqi invasion of August 1990. Delivery of the fighters started on 8 October 1991.[9]

Malaysia

The Royal Malaysian Air Force (Tentera Udara Diraja Malaysia) has eight F/A-18Ds.[20]

Spain

Spanish EF-18.

Spanish EF-18.

The Spanish Air Force ordered 60 EF-18A/A+ model and 12 B/B+ model Hornets, and also received 24 F/A-18s transferred from U.S. inventory. Six of the Spanish Hornets were lost. The Hornet is designated C.15 by Spain.[19] Delivery of the Spanish version started on November 22, 1985.[9]

Switzerland

Switzerland's Luftwaffe purchased 26 C models and 8 D models. One D model was lost in a crash.[19] Delivery of the aircraft started on 25 January 1996.[9]

Potential operators

The F/A-18C and F/A-18D were considered by the French Marine Nationale during the 1980s for deployment on their aircraft carriers Clemenceau and Foch[21] and again in the 1990s for the later nuclear-powered Charles de Gaulle,[22] in the event that the Dassault Rafale M was not brought into service when originally planned.

Austria,[23] Chile,[11] Czech Republic,[23] Hungary,[23] Philippines,[23] Poland,[23] and Singapore[11] evaluated the Hornet but did not purchase it. Thailand ordered four C and four D model Hornets but the Asian financial crisis in the late 1990s resulted in the order being canceled. The U.S. DoD then purchased the in-production Hornets for the Marine Corps.[11]

Variants

An F/A-18B Hornet assigned to the U.S. Naval Test Pilot School.

An F/A-18B Hornet assigned to the U.S. Naval Test Pilot School.
A Finnish Air Force F/A-18C at RIAT 2005

A Finnish Air ForceRIAT 2005 F/A-18C at

A/B

The F/A-18A is the single-seat variant and the F/A-18B is the two seat variant. The space for the two seat cockpit is provided by a relocation of avionic equipment and a 6% reduction in internal fuel; two-seat Hornets are otherwise fully combat-capable. The B model is used primarily for training.

In 1992, the original Hughes AN/APG-65 radar was replaced with the Hughes (now Raytheon) AN/APG-73, a faster and more capable radar. The A model Hornets upgraded to the AN/APG-73 are designated F/A-18A+.

C/D

The F/A-18C is the single-seat variant and the F/A-18D is the two seat variant. The D model can be configured for training or as an all-weather strike craft. The "missionized" D's rear seat is configured for a Weapons and Sensors Officer to assist in operating the weapons systems. The D model is primarily operated by the U.S. Marine Corps in the night attack and FAC(A) (Forward Air Controller (Airborne)) roles.

The F/A-18C and D models are the result of a block upgrade in 1987[9] incorporating upgraded radar, avionics, and the capacity to carry new missiles such as the AIM-120 AMRAAM air-to-air missile and AGM-65 Maverick[1] and AGM-84 Harpoon air-to-surface missiles. Other upgrades include the Martin-Baker NACES (Navy Aircrew Common Ejection Seat), and a self-protection jammer. A synthetic aperture ground mapping radar enables the pilot to locate targets in poor visibility conditions. C and D models delivered since 1989 also include an improved night attack capability, consisting of the Hughes AN/AAR-50 thermal navigation pod, the Loral AN/AAS-38 NITE Hawk FLIR (forward looking infrared array) targeting pod, night vision goggles, and two full-color (previously monochrome) MFDs and a color moving map.[1]

In addition, 48 D model Hornets are configured for reconnaissance as the F/A-18D (RC) version, substituting the gun with an electro-optical sensor package called ATARS.

Beginning in 1992, the F404-GE-402 enhanced performance engine, providing approximately 10% more maximum static thrust became the standard Hornet engine.[24] Since 1993, the AAS-38A NITE Hawk added a designator/ranger laser, allowing it to self-mark targets. The later AAS-38B added the ability to strike targets designated by lasers from other aircraft.[25]

Production of the F/A-18C ended in 1999. In 2000, the last F/A-18D was delivered to the U.S. Marine Corps.[9]

E/F Super Hornet

A VFA-11 F/A-18F Super Hornet performing evasive maneuvers during an air power demonstration above USS Harry S. Truman.

A VFA-11 F/A-18F Super Hornet performing evasive maneuvers during an air power demonstration above USS Harry S. Truman.

The single seat F/A-18E and two-seat F/A-18F Super Hornets carry over the name and design concept of the original F/A-18, but have been extensively redesigned. The Super Hornet has a new, 25% larger airframe, larger air intakes, more powerful GE F414 engines based on F/A-18's F404, and upgraded avionics suite. The aircraft is currently in production and will eventually equip 22 squadrons. The EA-18G Growler is an electronic warfare version of the two-seat F/A-18F, which entered production in 2007. The Growler will replace the Navy's EA-6B Prowler.

Other U.S. variants

RF-18
This designation was given to a reconnaissance version of the F/A-18A. The first of two prototypes flew in February 1984, however the variant was not produced.
TF-18A
Two-seat training version of the F/A-18A fighter, later redesignated F/A-18B.
X-53, NASA's modified F/A-18.

X-53, NASA's modified F/A-18.
F-18D(CR)
Proposed two-seat reconnaissance version for the US Marine Corps. The F-18D(CR) was originally intended to replace the RF-4B Phantom II tactical reconnaissance aircraft. None were ever built.
F-18 HARV
Single-seat High Alpha Research Vehicle for NASA.
X-53 Active Aeroelastic Wing
A NASA F/A-18 has been modified to demonstrate the Active Aeroelastic Wing technology, and was designated X-53 in December 2006.
Taken from http://en.wikipedia.org/wiki/F-18




0 komentar:


Blogspot Template by Isnaini Dot Com